

A Level Mathematics B (MEI)

H640/01 MEI Pure Mathematics and Mechanics

Mechanics

Question Set 6

[2]

[2]

[2]

[2]

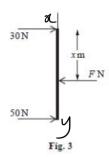
(a) Calculate the acceleration of the box.

$$S = V^2 = V^2 + 2 \text{ as}$$

T

(b) Find the magnitude of the force that Rory applies.

2 The position vector r metres of a particle at time t seconds is given by


$$\mathbf{r} = (1+12t-2t^2)\mathbf{i} + (t^2-6t)\mathbf{j}$$
.

(a) Find an expression for the velocity of the particle at time t.

(b) Determine whether the particle is ever stationary.

Oi + oj =
$$(12-4t)i + (2t-6)j$$
 $12-4t=0$ $2t-6=0$
 $-4t=-12$ $2t=3$
 $t=3$
 $t=3$
 $t=3$
 $t=3$
 $t=3$

A rod of length 2m hangs vertically in equilibrium. Parallel horizontal forces of 30N and 50N are applied to the top and bottom and the rod is held in place by a horizontal force FN applied xm below the top of the rod as shown in Fig. 3.

[1]

[2]

(a) Find the value of F.

(b) Find the value of x.

$$86x = 100$$

 $x = 1.25$

A pebble is thrown horizontally at 14ms⁻¹ from a window which is 5m above horizontal ground. The pebble goes over a fence 2m high dm away from the window as shown in Fig. 4. The origin is on the ground directly below the window with the x-axis horizontal in the direction in which the pebble is thrown and the y-axis vertically upwards.

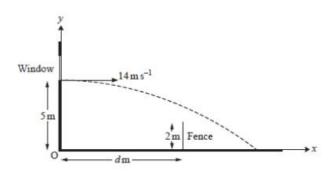


Fig. 4

(a) Find the time the pebble takes to reach the ground.

(b) Find the cartesian equation of the trajectory of the pebble.

$$x=144.9=5-4.9t^{2}.t=\frac{36}{14}$$

 $509=5-4.9(\frac{36}{14})^{2}$
 $y=5-\frac{32}{40}$

(c) Find the range of possible values for d.

$$y=2$$
 then $5-\frac{x^2}{40}=2$ so $\frac{x^2}{40}=3$
so $x=\sqrt{120}=11$ m so $0<0<1$

Fig. 5 shows two blocks at rest, connected by a light inextensible string which passes over a smooth pulley. Block A of mass 4.7 kg rests on a smooth plane inclined at 60° to the horizontal. Block B of mass 4 kg rests on a rough plane inclined at 25° to the horizontal. On either side of the pulley, the string is parallel to a line of greatest slope of the plane. Block B is on the point of sliding up the plane.

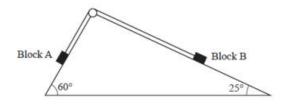


Fig. 5

[2]

(-)

[5]

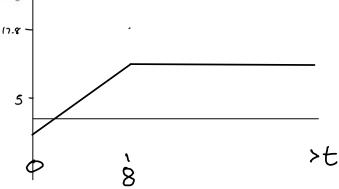
[3]

(a) Show that the tension in the string is 39.9 N correct to 3 significant figures.

(b) Find the coefficient of friction between the rough plane and Block B.

6 The velocity of a car, vms⁻¹ at time t seconds, is being modelled. Initially the car has velocity 5 ms⁻¹ and it accelerates to 11.4 ms⁻¹ in 4 seconds.

In model A, the acceleration is assumed to be uniform.


(a) Find an expression for the velocity of the car at time t using this model.

(b) Explain why this model is not appropriate in the long term.

because acceleration is most likely not going to be constant in the long term.

Model A is refined so that the velocity remains constant once the car reaches 17.8 m s⁻¹.

(c) Sketch a velocity-time graph for the motion of the car, making clear the time at which the acceleration changes. [3]

(d) Calculate the displacement of the car in the first 20 seconds according to this refined model.

[3]

Area=
$$(12 \times 7.8) + \frac{1}{2} (5 + 17.8)(8)$$

= 304.8m

In model B, the velocity of the car is given by

$$v = \begin{cases} 5 + 0.6t^2 - 0.05t^3 & \text{for } 0 \le t \le 8, \\ 17.8 & \text{for } 8 < t \le 20. \end{cases}$$

(e) Show that this model gives an appropriate value for v when t = 4.

(f) Explain why the value of the acceleration immediately before the velocity becomes constant is likely to mean that model B is a better model than model A.
[3]

$$85+0.64^{2}-0.05t^{3}dt$$

$$= 5t+0.2t^{3}-0.0125t^{4}7^{8}$$

$$= 91.2m.$$

$$91.2+17.8(12)=304.8m$$
Which is some as model A.

Total Marks for Question Set 6: 45